State of the Oceans: 2011

Jim Galasyn University Congregational United Church of Christ 20 November 2011

Agenda

- Background
- Overfishing
- Biogeochemical cycles
- Prospects

Background

- Biography
- Exponential growth
- Predator-prey relationship
- Mass extinction events
- Permian-Triassic extinction

Soylent Green

Exponential function

"The greatest shortcoming of the human race is our inability to understand the exponential function."

Albert Allen Bartlett

Exponential growth

Exponential decay

converted to predator offspring

ease in prey population

Rate of change in prey population

ninus number of prey killed by predators

$N_{h} = \frac{1}{2\tau} \pm (\tau^{2} - 4Ce^{\tau})^{\frac{1}{2}}$ $N_{p} = \frac{1}{2\tau} \mp (\tau^{2} - 4Ce^{\tau})^{\frac{1}{2}}$

Rate of change in predator population

minus number of predator deaths

equals rate at which prey are converted to predator offspring

rease in prey population

Rate of change in prey population

minus number of prey killed by predators

er

Rate of change in predator population

minus number of predator deaths

equals rate at which prey are converted to predator offspring

Predator-prey curves

Predator-prey curves

Predator-prey curves

Marine food web

Mass extinction events

Overfishing

- Pelagic longlines
- Bottom trawling
- Trophic cascades: top-down
- Trophic cascades: bottom-up

Overfishing: pelagic longlines

Pelagic longlines

Pelagic longlines

Pelagic longlines

HOW BOTTOM-TRAWLING WORKS

Perhak, Malaysia 4.58°N 100.54°E 8 Feb 2006 9m depth

Contrast.

Kyle Van Houtan, Ph.D. (© DigitalGlobe) kyle.vanhoutan@gmail.com

These boats do not appear to be trawling, but anchored by ropes and stationary, allowing the current to bring shrimps and fish into their nets

Louisiana, USA 29.14°N 91.37°W 24 Oct 1999, 6m depth

Overfishing

Community Changes on Southern Grand Bank

Year
Overfishing

Trophic cascade

Trophic cascade

Trophic cascade

Fishing down the food web

Plankton

Krill decline

Krill decline

Shellfish decline

Ocean overexploitation

Element cycles

- Phosphorus eutrophication
- Nitrogen eutrophication, acid rain
- Sulfur anoxia, acid rain
- Carbon warming, euxinia, acidification

Element cycle perturbations

Element cycle	Anthropogenic perturbation	Perturbation source
Nitrogen	80 megatons/year	Fertilizer production transfers 80 Tg of N per year from atmosphere to soil. ¹
Sulfur	108 megatons/year	1 Tmol from transfer of oxidized and reduced sediments from mining to soil; 2 Tmol from transfer of reduced sediments to atmosphere from burning fossil fuels. ²
Phosphorus	9-32 megatons/year	Fertilizer production transfers 9-32 Tg of P per year from mining to the oceans. ³
Carbon	9000 megatons/year	33 Gt of CO ₂ (9 Gt C) released from burning fossil fuels in 2010. ⁴

Element cycle perturbations

Element cycle	Anthropogenic perturbation	Perturbation source
Nitrogen	80 megatons/year	Fertilizer production transfers 80 Tg of N per year from atmosphere to soil. ¹
Sulfur	108 megatons/year	1 Tmol from transfer of oxidized and reduced sediments from mining to soil; 2 Tmol from transfer of reduced sediments to atmosphere from burning fossil fuels. ²
Phosphorus	9-32 megatons/year	Fertilizer production transfers 9-32 Tg of P per year from mining to the oceans. ³
Carbon	9000 megatons/year	33 Gt of CO ₂ (9 Gt C) released from burning fossil fuels in 2010. ⁴

Earth movement by humans

Ocean stressors: element cycles

Phosphorus in Chesapeake Bay

Phosphorus in Chesapeake Bay

Nitrogen in Spain

Nitrogen in Spain

Nitrogen in Europe

Nitrogen

Nitrogen in the Gulf of Mexico

Nitrogen in the Gulf of Mexico

Gulf of Mexico dead zone

Global nitrogen perturbation

Global dead zones

1995: 195 hypoxia events

Global dead zones

2008: 400 hypoxia events

Global dead zones

Number of dead zones doubles every 10 years

2008: 400 hypoxia events

Carbon: ocean warming

Ocean warming

Ocean phenology changes

Ocean warming: invasive species

NewScientist

Giant crabs invade Antarctic seafloor

Chinstrap penguin decline

Chinstrap penguin decline

Chinstrap penguin decline

Hydrologic cycle

- "A warmer world is a wetter world."
- Increased nutrient deposition into oceans
- Drives phenology

Hydrologic cycle

Before PETM: Sediment is 10% clay and rich in tiny calcareous shells.

55 million years ago: Large CO₂ release abruptly changes ocean pH.

Before PETM: Sediment is 10% clay and rich in tiny calcareous shells.

Sediments from this 50,000 year period
are almost all red clay. Ocean acidity prevents formation of carbonate shells.

55 million years ago: Large CO₂ release abruptly changes ocean pH.

Before PETM: Sediment is 10% clay and rich in tiny calcareous shells.

Ocean acidification and krill

Normal krill embryo development

Abnormal krill embryo development

Ocean acidification and mollusks

Buchanan Lake

Siberian trap emissions: 3 trillion tons C over 1 million years 3 million tons C per year

Buchanan Lake

Siberian trap emissions: 3 trillion tons C over 1 million years 3 million tons C per year

Buchanan Lake

Modern power plant

Human emissions: 1 trillion tons C over 100 years 9 billion tons C per year

Human C emissions: 3,000 times greater than P-T mass extinction

Anaerobic microbes

Ocean-wide anoxia

Ocean anoxia

Microbe-dominated oceans

"The future is bright for dinoflagellates." Jeremy Ja<u>ckson</u>

Microbe-dominated oceans

"The future is bright for dinoflagellates." Jeremy Jackson

Prospects

- King Coal
- Human population
- Solutions: realistic, scalable
- Wastewater treatment
- Atmospheric vortex engines
- Sequestering ocean carbon
- What you can do

Prospects

Isolated reindeer population

Population overshoot

Human population

Human population

Fossil fuel industry

Fossil fuel industry

Fossil fuel industry

- Globally, 2 million tons of sewage and industrial and agricultural waste are poured into the world's waters every day
- 730 million tons per year
- 90% of sewage in the developing world goes untreated

Hurricane Carnot cycle

Supercell

Atmospheric Vortex Engine

Ocean sequestration

Prospects

Prospects

Carbon fast and carbon offsets

2011 Ecumenical Lenten Carbon Fast

Carbon fast and carbon offsets

2011 Ecumenical Lenten Carbon Fast

Native Energy Bringing New Renewables To Market

What you can do right now

- Buy only sustainable seafood.
- Don't use pesticides, herbicides, or fertilizers.
- Use phospate-free detergent.
- Buy organic and locally grown food.
- Recycle aggressively.
- Prefer public transportation to driving.
- Reduce or eliminate air travel.

Resources

Desdemona Despair: Blogging the End of the World™ **Ecumenical Lenten Carbon Fast Creation Care** *Native*Energy **Atmospheric Vortex Engine C**questrate **Census of Marine Life** Hypoxia in the Northern Gulf of Mexico Jeremy Jackson: Brave New Ocean